

HEF-003-1101001

Seat No.

M. Sc. (Sem. I) (CBCS) Examination

November / December - 2017 C-101 : Inorganic Chemistry

> Faculty Code: 003 Subject Code: 1101001

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

Instructions: (1) All questions are compulsory.

- (2) All questions carry equal marks.
- 1 Answer the following: (any seven)

14

- (a) Explain, why the shape of H₂O is bent?
- (b) Find out the ground state spectral term of the following:
 - (i) d^3 (ii) d^5
- (c) Write a note on quantum dots.
- (d) What do you mean by Hybridization? Explain
- (e) Discuss MB spectrum of Fe(CO)₅.
- (f) Explain Magnetic pole, dipole and unit pole
- (g) Define Huckel theory for conjugated systems.
- (h) Explain Recoil energy in Mossbauer Spectroscopy.
- (i) Draw the structure of Cu-EDTA complex.
- (j) Discuss the history of nanomaterials.
- 2 Answer the following: (any two)

14

- (a) Write a note on the following methods for synthesis of nano materials.
 - (a) Sol-Gel synthesis
 - (b) Microwave synthesis
- (b) Evaluate the Magnetic Moment for Multiple width small compared to kT.
- (c) Discuss the stereo chemical applications of magnetic properties of Lanthanides

3	Answer the following: (any two)		14
	(a)	Derive secular Equation for Hydrogen molecule ion.	
	(b)	Discuss the use of the following reagents in Inorganic	
		analysis:	

- (1) $Ce(SO_4)_2$
- (2) NH₄VO₃
- (c) Discuss the Mossbauer spectrum of following:
 - (1) $K_4[Fe(CN)_6]$
 - (2) $K_3[Fe(CN)_6]$
- 4 Answer the following: (any two) 14
 - (a) Explain SEM or TEM in detail.
 - (b) Explain Gouy method for determination of magnetic susceptibility.
 - (c) Discuss the set of Integrals introduced by Huckel.
- 5 Answer the following: (any two)

 14
 - (a) Evaluate the coefficient of wave function for sp² hybrid orbitals and show that the bond angle is of 120°.
 - (b) Discuss S-S coupling.
 - (c) Derive Van Vleck formula for susceptibility.